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Introduction. Let A be an n-dimensional hermitian matrix. Such objects are
fully characterized/distinguished from one another by their spectra {λi} and
orthonormal eigenvectors {eeei} : i = 1, 2, . . . , n. Spectral decomposition1

A =
n∑

i=1

λi Pi : Pi = eeeieee
T
i

suggests that the elements Pi of the complete commuting set {Pi} of hermitian
projection matrices are more fundamental than the vectors onto which they
project: Pieeei = eeei. This foundational linear algebra finds important application
to the measurement theory of n -state quantum systems. In that context, A
provides representation of a measurement device, the λi are the possible post-
measurement readings of the device, and—given that the system was in state
ψψψ—ψψψTPiψψψ is the probability that the device reads λi.

PeterDenton, Stephen Parke &Xining Zhang (DPZ) are neutrino physicists
(working at Fermilab, Chicago & Brookhaven, respectively), with vested
interest therefore in a 3-state quantum system. While preparing a recent
publication2 they hit upon and made essential use of a pretty aspect of the
linear algebra sketched above that appears to have escaped prior notice—a
result that engaged the excited interest of Terrence Tao (UCLA).3 In Natalie
Wolchover’s article “Neutrnos lead to unexpected discovery in basic math”
(Quanta Magazine, 13 November 2019)—from which I learned of this

1 We assume the spectrum to be non-degenerate, the eigenvectors to be
column vectors, and use T to denote conjugate transposition.

2 “Eigenvalues: the Rosetta Stone for neutrino oscillations in matter,” arXiv:
1907.02534v1 [hep-ph] 4 Jul 2019.

3 MacArthur Fellow and Fields Medalist 2006, prolifically active in a great
many fields, especially the theory of random matrices.
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development—it is reported that within two hours Tao devised three proofs of
the DPZ result. Two of those are presented in the 21

2 -page paper4 that the
physicists + Tao (DPTZ) posted to the web, from which I work.

In the following discussion I follow the pattern of DPTZ’s second argument
to produce a generalization of their result.5 As a matter only of typographic
convenience, I will assume A to be real symmetric (= specialized hermitian),
and will set n = 3 (manageably small, yet not too small); both restrictions are
easily relaxed. It will emerge that the DPTZ result is (as are its generalizations)
no more than a corollary Cramer’s Rule.

Classic preliminaries. Given

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33





the aab -submatrix Aab is the 2×2 matrix produced by striking the ath row and
the bth column, of which there are, in the general case n2, and in the present
instance 9. From

A12 =
(

a21 a23

a31 a33

)
, A21 =

(
a12 a13

a32 a33

)

we see that if A = AT then Aab = Aba
T. The cofactor of aab is defined/denoted

cab ≡ (−)a+b det Aab

and the comatrix of A is the matrix of cofactors:

C =




c11 c12 c13

c21 c22 c23

c31 c32 c33





=





+ det
(

a22 a23

a32 a33

)
−det

(
a21 a23

a31 a33

)
+ det

(
a21 a22

a31 a32

)

−det
(

a12 a13

a32 a33

)
+ det

(
a11 a13

a31 a33

)
−det

(
a11 a12

a31 a32

)

+ det
(

a12 a13

a22 a23

)
−det

(
a11 a13

a21 a23

)
+ det

(
a11 a12

a21 a22

)





From assumed symmetry/hermiticity of A follows (by cab = c̄ba) the symmetry/
hermiticity also of C.

4 “Eigenvectors from eigenvalues,” arXiv:1906.03795v1 [math.RA] 10 Aug
2019. It will emerge that the title is in one important respect misleading.

5 Their first argument proceeds from an assumption that, while it may be
physically motivated, is mathematically extraneous, and requires development
of a “Cauchy-Binet type” lemma.
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From Cramer’s Rule6 follows this classic construction of A–1:

A–1 = 1
det AadjA (1)

where adjA, the adjugate of A, is defined7

adjA = transpose of C

We will find it convenient in place of (1) to write

adjA = (det A) A–1 (2)

The DPTZ construction. For λ not an eigenvalue of A we as an instance of (2)
have

adj(λI − A) = det(λI − A) · (λI − A) –1

From det(λI−A) = (λ−λ1)(λ−λ2) · · · (λ−λn) and the fact—for all f(•)—that
if Aeee = λeee then f(A)eee = f(λ)eee, we have

adj(λI − A)eeej = (λ − λ1)(λ − λ2) · · · (λ − λn)
(λ − λj)

eeej

So the orthonormal eigenvectors of A are eigenvectors also of adj(λI−A), with
eigenvalues

Λj(λ) =
n∏

k=1,k !=j

(λ − λk) (3)

By spectral decomposition we therefore have

adj(λI − A) =
n∑

j=1

Λj(λ)Pj (4)

with Pj =





ej1ēj1 ej1ēj2 · · · ej1ējn

ej2ēj1 ej2ēj2 · · · ej2ējn

...
...

. . .
...

ejnēj1 ejnēj2 · · · ejnējn





The components of the eigenvectors eeej are real/complex according as A is real
symmetric or hermitian, so the projection matrices Pj are real symmetric or
hermitian according as adj(λI − A) is.

6 That is, from the determinental solution (when it exists) of the linear
system Axxx = yyy developed by the Genevoise mathematician Gabrial Cramer
(1704–1752) in 1750.

7 For real matrices the distinctoin between “transposition” and “conjugated
transposition” disappears, and we have adjA = C T.
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Now set λ = λi. Get

Λj(λi) =






n∏

k=1,k !=j

(λi − λk) : j = i

0 : j $= i

so the sum in (4) collapses to a single term, giving

adj(λi I − A) = Λi(λi)Pi =
n∏

k=1,k !=i

(λi − λk)Pi

which element-wise reads

eiaēib = adj(λi I − A)ab

/ n∏

k=1,k !=i

(λi − λk) (5)

Look now to the numerator of the expression on the right side of (5). We
have

C(λ) =




c11(λ) c12(λ) c13(λ)
c21(λ) c22(λ) c23(λ)
c31(λ) c32(λ) c33(λ)





with
c11(λ) = + det

(
λ − a22 −a23

−a32 λ − a33

)

c12(λ) = −det
(
−a21 −a23

−a31 λ − a33

)

c13(λ) = + det
(
−a21 λ − a22

−a31 −a32

)

c21(λ) = −det
(
−a12 −a13

−a32 λ − a33

)

c22(λ) = + det
(

λ − a11 −a13

−a31 λ − a33

)

c23(λ) = −det
(

λ − a11 −a12

−a31 −a32

)

c31(λ) = + det
(

−a12 −a13

λ − a22 −a23

)

c32(λ) = −det
(

λ − a11 −a13

−a21 −a23

)

c33(λ) = + det
(

λ − a11 −a12

−a21 λ − a22

)






(6)

From aab = āba it is seen to follow that the submatrices Mab that appear in
(6) stand in the relation Mab = Mba

T, which gives back cab(λ) = c̄ba(λ). We note
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also that in this 3-dimensional example the elements that stand on the diagonal
of C(λ) are quadratic in λ, while the off-diagonal elements are linear in λ. In
the n -dimensional case the diagonal elements of C(λ) are polynomials of order
λn, the off-diagonal elements of order λn−1.

We are in position now to construct detailed descriptions of the elements
of

adj(λI − A) =




c11(λ) c21(λ) c31(λ)
c12(λ) c22(λ) c32(λ)
c13(λ) c32(λ) c33(λ)



 = transposed C(λ)

and therefore of adj(λi I − A), and to feed those into (5). Let

ωab,s(λi) : s = 1, 2, . . . , n − 1

denote the eigenvalues of the submatrices Mab(λi). Then (5) can be written

eiaēib =
n−1∏

s=1

ωba,s(λi)
/ n∏

k=1,k !=i

(λi − λk) (7)

which provides an eigenvalue-wise description of the eigenvector component
products that appear (for example) in the development of eeei

TBeeei (B any n×n
matrix).

DPTZ have special interest in the squared norms |eia|2 = eiaēia of the
components of eeei which, because they live on the diagonal of Pi, can be developed
in finer detail. If αa,s denote the eigenvalues of the submatrices Aaa then

ωaa,s(λi) = λi − αa,s

and (7) becomes

|eia|2 =
n−1∏

s=1

(λi − αa,s)
/ n∏

k=1,k !=i

(λi − λk) (8)

which is DPTZ’s main result, to which they give no name, but might be called
the spectral construction theorem. Though of novel appearance, it has been
seen to derive from familiar stuff: Cramer’s Rule and the spectral decomposition
of hermitian matrices.

Limitations. DPTZ do not mention—nor will I attempt to address—the
modifications to which (8) must be subjected in cases where the spectrum of A
is degenerate.

Let a real symmetric (or—a bit less conveniently—a hermitian) matrix A
be given. It is then easy, with a resource like Mathematica, to verify (8), but
one wonders What is the point? It is easy enough in such cases to construct the
eigenvalues and normalized eigenvectors directly . If one does use (8) to obtain
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the squared norms of the components of eeei, those in themselves are sufficient
to determine only that

eeei =





eiϕ1
√
|ei1|2

eiϕ2
√
|ei2|2

...
eiϕn

√
|ein|2





and we lack means to determine the n−1 relative phases; in real symmetric cases
we lack means (except by trial and error) to select correctly from the ± sign
alternatives. In this respect the title of the DPTZ paper4 is a bit misleading.

Orthonormality & completeness. The Spectral Construction Theorem appears
not to supply information of the type eiaēja required to establish orthogonality
of the eigenvectors. But it should on that basis be possible—as a consistency
check—to confirm normality. I look by way of illustration to the normality of eee1

in cases where the 3-dimensional real symmetric matrix A has a non-degenerate
spectrum.

Our objective is to establish that
∑3

a=1 |e1a|2 = 1. By (8) we in this
instance have

|e11|2 =
(λ1 − α1,1)(λ1 − α1,2)

(λ1 − λ2)(λ1 − λ3)

=
λ2

1 − λ1(α1,1 + α1,2) + α1,1α1,2

(λ1 − λ2)(λ1 − λ3)

= λ2
1 − λ1trA11 + det A11

(λ1 − λ2)(λ1 − λ3)
(9.1)

|e12|2 = λ2
1 − λ1trA22 + det A22

(λ1 − λ2)(λ1 − λ3)
(9.2)

|e13|2 = λ2
1 − λ1trA33 + det A33

(λ1 − λ2)(λ1 − λ3)
(9.3)

Let us assume, as we may, that A had been rotationally/unitarily diagonalized:

A =




λ1 0 0
0 λ2 0
0 0 λ3



 , giving






A11 =
(

λ2 0
0 λ3

)

A22 =
(

λ1 0
0 λ3

)

A33 =
(

λ1 0
0 λ2

)

By (9)

|e11|2 = λ2
1 − λ1(λ2 + λ3) + λ2λ3

(λ1 − λ2)(λ1 − λ3)
= λ2

1 − (λ1λ2 + λ1λ3 + λ2λ3)
(λ1 − λ2)(λ1 − λ3)

= (λ1 − λ2)(λ1 − λ3)
(λ1 − λ2)(λ1 − λ3)

= 1
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|e12|2 = λ2
1 − λ1(λ1 + λ3) + λ1λ3

(λ1 − λ2)(λ1 − λ3)
= 0

|e13|2 = λ2
1 − λ1(λ1 + λ2) + λ1λ2

(λ1 − λ2)(λ1 − λ3)
= 0

so we have

eee1 =




±1
0
0



, similarly eee2 =




0
±1
0



, eee3 =




0
0
±1





The signs can be dismissed as irrelevant over-all signs, so we have (surprisingly?)
recovered descriptions of the eigenvectors themselves. The argument extends
straightforwardly to arbitrary dimension n, and shows proof of orthogonality
to be a simple exercise in the theory of symmetric polynomials. It has led to a
result that follows obviously from the assumed diagonal structure of A.

I digress to describe a curious fact. From orthonormal vectors

eeei =




ei1

ei2

ei3



 : i = 1, 2, 3

construct

R = (eee1, eee2, eee3) =




e11 e21 e31

e12 e22 e33

e13 e23 e33





which is a rotation matrix

RTR =




eee1···eee1 eee1···eee2 eee1···eee3

eee2···eee1 eee2···eee2 eee2···eee3

eee3···eee1 eee3···eee2 eee3···eee3



 = I

and so gives back the orthonormality statement
3∑

k=1

eikejk = δij (10.1)

But so also is R T a rotation matrix:

R RT =




e11 e21 e31

e12 e22 e32

e13 e23 e33








e11 e12 e13

e21 e22 e23

e31 e32 e33



 = I

from which follow the less familiar statements
3∑

i=1

eijeik = δjk (10.2)

In the cases j = k this reads
3∑

i=1

eijeij = 1 : compare the normlization conditions
3∑

j=1

eijeij = 1

where we are summing corresponding components of different vectors, rather
than the various components of a given vector; we have here an analog of what
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in some contexts is known as a “completeness relation.” Returning in this light
to applications of the Spectral Construction Theorem, the normalization of eee1

asserts

(λ1 − α1,1)(λ1 − α1,2) + (λ1 − α2,1)(λ1 − α2,2) + (λ1 − α3,1)(λ1 − α3,2)
(λ1 − λ2)(λ1 − λ2)

= 1

while the completeness of {eee1, eee2, eee3} entails

(λ1 − αj,1)(λ1 − αj,2)
(λ1 − λ2)(λ1 − λ3)

+
(λ2 − αj,1)(λ2 − αj,2)

(λ2 − λ1)(λ2 − λ3)
+

(λ3 − αj,1)(λ3 − αj,2)
(λ3 − λ1)(λ3 − λ2)

= 1

In the former we see a shared denominator but all possible α-values in the
numerator (it was to manage those that we resorted to the “diagonalization
trick”), while in the latter we see only a single pair of α-values in the numerator
but an assortment of denominators. The remarkable fact to which I draw
attention is that the completeness equation—like also its higher-dimensional
siblings—is, according to Mathematica, valid as an identity—irrespective of the
values assigned to the α’s.

It is of interest to recall finally that the αa,s that appear in (and bedevil)
the Spectral Construction Theorem (8)—eigenvalues of principal submatrices of
A—are, as Arthur Cayley (1821–1895) observed, subject to an elegant
constraint: the Cayley interlace theorem8 asserts that if {λ1, λ2 . . . , λn} are
eigenvalues of an n-dimensional real symmetric/hermitian matrix A, and if
{µ1, µ2 . . . , µn−1} are eigenvalues of any principal submatrix M of A, then

λ1 ! µ1 ! λ2 ! µ2 ! λ3 ! · · · ! λn−1 ! µn−1 ! λn

The “diagonalization trick” exposed extreme instances of this situation.

Physical origin/application of the Spectral Construction Theorem. I quote from
the DPZ paper:2

abstract: We present a new method of exactly calculating neutrino
oscillation probabilities in matter. We show that, given the eigenvalues,
all mixing angles follow surprisingly simply and the CP violating phase
can also be trivially determined. Then, to avoid the cumbersome
expressions for the exact eigenvalues, we have applied previously
determined perturbatively approximate eigenvalues to this scheme, and
found it to be incredibly precise. We also find that these eigenvalues
converge at a rate of five orders of magnitude which is the square of the
naive expectation

The “cumbersome expressions” that they—like named predecessors—are at
pains to avoid arise from the pedestrian fact that to obtain the eigenvalues

8 See, for example, Steve Fisk, “A very short proof of Cauchy’s interlace
theorem for eigenvalues of hermitian matrices,” arXiv:math/0502408v1
[math.CA] 18 Feb 2005.



Physical origin/application of the Spectral Construction Theorem 9

of a 3-dimensional matrix one must solve a cubic polynomial. An equation of the
form (8) first appears as equation (2.3) on page 3 of their 17-page paper. The
eigenvalues derive exactly/approximately from a 3-dimensional Hamiltonian
matrix that purports to describe neutrino oscillation in matter, and the | • |2
on the left describes “the squares of the elements of the mixing matrix.” The
authors state that “(2.3) is one of the primary results of our paper. Given the
eigenvalues of the Hamiltonian and the eigenvalues of the submatrix
Hamiltonian, it is possible to write down all nine elements of the mixing matrix,
squared. The result is also quite simple and easy to memorize which is
contrasted with the complicaterd forms from previous solutions.”

The derivation of their version of (8) they reserve for the second of their
five appendices. Their argument is specific to the 3-dimensional case, and their
notation obscured by their physical preoccupations. Yet DPZ sensed the latent
general significane of their result. According to the Quanta Magazine article
mentioned on page 1, they “took a chance and contacted Terrance Tao, despite
a note on his website warning against such entreaties.”9 Tao responded within
two hours, saying he had never seen this before, and included three independent
proofs. DPTZ4—clearly the work of T—was posted a week later.

addendum

This record of my effort to understand DPTZ’s accomplishment, which was
preceded by fairly extensive Mathematica -based numerical experimentation,
was completed on 5 December. On the 6th I shared it with a few friends
who I thought might have interest in it. In the accompanying note I remarked
how surprising it is that fresh gems remained to be discovered in a field so old
and well plowed as linear algebra, and that the result might well have been
discovered 150 years ago by Arthur Cayley, who—on evidence of (for example)
his Interlacing Theorem and the Cayley-Hamilton theorem—had a creative
interest in (among so many other things) the secret life of eigenvalues.

Today—Pearl Harbor Day—I looked again to the Quanta Magazine article,
seeking contact information so that I might commend Natalie Wolchover for her
having drawn attention to this obscure work. There I was informed that her
November 19th article (now amended) has come to rank as one of the magazine’s
most popular articles (so much for my delusion that I might be the only person
who found it interesting!), and was reminded that soon after the DPTZ arXiv
paper4 was posted Tao had been informed by Jiyuan Zhang that a similar result
(in Tao’s opinion “similar but not identical”) appears already in a paper that
he and his senior co-author had posted in June,10 and that a related formula

9 Tao may have a reputation for being unapproachable, but his website
https://www.math.ucla.edu/∼tao suggests quite the opposite.

10 Peter J. Forrester & J. Zhang, “Co-rank 1 projections and the randomized
Horn problem,” arXiv:1905.05314v3 [math-ph] 15 June 2019. Those authors
are mathematicians at the University of Melbourne, and their work relates to
a random matrix problem that Tao and a collaborator had solved in 1999.
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appears in the 2001 paper by Yully Baryshnikov which they had taken as their
point of departure.

The flood of correspondence provoked by the Quanta article (up-dated on
December 4th) led DPTZ to rewrite their original paper. The new paper11
runs to 26 pages, and provides 50 references. The authors provide about seven
alternative proofs of what they now call the eigenvector-eigenvalue identity,
discussion of the remarkably diverse contexts that have led to its repeated
reinvention/application, a graph indicating how references to the identity have
been interlinked (sparce because users of the identity have been so often
ignorant of each other’s work), and in their final §5. Sociology of science
issues suggest three reasons that the identity has remained so little known:

• The identity is mostly used as an auxiliary tool for other purposes.
• The identity does not have a common name, form or notation, and does

not involve uncommon keywords.
• The field of linear algebra is too mature, and its domain of applicability is

too broad; users rely on textbooks, the content of which is static.

What they have specifically in mind by those heads is developed in their text.

11 “Eigenvectors from eigenvalues: survey of a basic identity in linear algebra,”
arXiv:1908.03795v2 [math-RA] 2 Dec 2019.


